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We consider the inverse problem for a three-wave interaction system in a manner 
different from Zakharov et al. and of  Kaup. Our method is an adaptation of the 
technique due to Date to a 3 x 3 Lax pair. The analysis leads to a system of 
ordinary nonlinear equations for the/*i variables linearizable through a suitable 
definition of differential on a Riemann surface. Next, in the degenerate case, 
when the/xi are equal in pairs, we prove that such a set of  equations is exactly 
integrable and leads to solitary solutions. 

1. FORMULATION 

The equations describing the dispersion three-wave process z_re 

Ql,+clQlx " * * = tq Q2 Q3 

Q2, + c2Q2x " * * = ZrEQ1 Q3 (1) 

Qat+caQax-" * * - zraQ2 Q1 

This set of equations has been discussed in detail by Zakharov et al. (1984) 
and Kaup (1972) from the viewpoint of inverse scattering. We Will also 
start from the Lax pair utilized in Zakharov et al. (1984). The x part of the 
Lax equation is written as 

[ iXdl Q~(x) Q'2(x)\ 
d/x = la lQ* ' ( x )  iAd2 Q~(x)}~ 

\a2Q*'(x)  a3Q*a'(X) iAd3 ] 
(2) 
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o r  

G = L4' 

2. INTRODUCTION 

The inverse problem for the three-wave process has been dealt with in 
detail by Kaup (1972), and Zakharov et al. (1984). The case they considered 
was the usual asymptotically decaying case. On the other hand, another 
case of equal importance is the periodic inverse problem, which was solved 
for the cases of nonlinear SchrSdinger (Roy Chowdhury et al., 1985) and 
its variants, the sine-Gordon (Forest and Maclaughlin, 1982) and Thirring 
models (Date, 1978), essentially following the idea of Date and Tanaka 
(1976). In this paper we extend this philosophy to a 3 x 3 inverse problem 
and show that it is possible to solve both the asymptotic and periodic case 
at one. 

In the following we will also require the adjoint of the Lax equation. 
Let us denote the adjoint wavefunction as ~ and the corresponding matrix 
as/7, 

~;x = q'-s (3) 

From equations (2) and (3) we easily deduce 

alQ1 f 1 2 - a 2 0 2  713 (4a) ( f l  1)x --  ' ' * '  * '  - Ql f21 + Q2f31 - 

(f22)x = a,  O*1'f12 + Q~ f 3 2 -  ' *' Ql f2x  - a3Q3 f23 (4b) 

(f33)x = a2Q2*'fa3 + a3Q3*'f23 - Q~f3,  - Q'3f32 (4c) 

( f , 2 ) , , = b ~ ( d l - d 2 ) f , 2 + Q ~ ( f 2 2 ) + Q ' 2 ( f 3 2 ) - Q ~ ( f 1 1 ) - a 3 Q * 3 ' ( f , 3 )  (5a) 

( f21)x  = i A ( d 2 - d 1 ) f 2 1 + a 1 Q * l ' ( f 1 , ) + Q ' 3 ( f 3 , ) - a 1 Q * l ' f 2 2 - a i Q * 2 ~ f 2 3  (5b) 

(f13)x = i x ( a , -  G)A ,  + O~(f23) + O I A ~ -  O'~f11- O;f12 (5c) 

(f3,)x = i.~(d3 - dOf31 + a20*'(f1,)  + a3O*'f2, - a~O*'A2-  a20*'f33 (5d)  

and similarly 

( f23)x  = / A  ( d  2 - d3)f23 + a 1Q*l ' f13 + Ot3f33 - O'2f21 - O'3f22 ( 5 e )  

a2Q2 f ,2+ a3Q3 f = -  Q 1 A I  a3Q*3'f33 (Sf) (f32)x = i h ( d 3 - d 2 ) f 3 2 +  *' *' ' - 

where the f j  are the following product eigenfunctions: 

f J  = ~P,4 ( i , j  = 1, 2, 3) 

We then compute and observe that the following equations hold: 

(f~2A~-fn f=)x,t = 0 
(A~A~ -A,A~)x, ,  = 0 (6) 

(f23A2 - f22f33)x, t  = 0 
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where the subscripts x, t denote differentiation with respect to the corre- 
sponding variable. Actually, an identical set of equations is obtained for 
the temporal evolution of f j  and so we have stated both the (x, t) parts 
simultaneously. Equations (6) immediately imply that the quantities inside 
the brackets are constants both in space and time, and the eigenfunctions 
themselves being analytic in A are analytic functions of A. Hence we set 

N+1 
f . =  Y~ f~a  2k 

0 

N (7) 
/ - k ~ 2 k + l  

f j  = a.~O.- , i # j  
0 

Substituting in (5a)-(5d) etc., and comparing various powers of A, we get 

along with 

i( d2 - d 1 ) f  2N11 
Q*I'- al(f~+l _ f~+,)  (9) 

Equations (8) and (9) immediately suggest 

f * ~  = - f ~ / a ,  (10) 

Similar results hold for Q2, Q3, and other f~j (i ~ j ) .  For example, 

i(d3 - d , ) f~ ,q, i(d3 - d2)f2~ 
Q'z=f~+~ _ f ~ + l ,  ,,~3 - ~  (11) 

J 3 3  - - J 1 1  

These equations are useful for the inverse problem of determining the 
nonlinear field variables in terms of the information available for f~. In the 
following we elaborate on this aspect. 

To proceed further, we now write the integrals of motion of equations 
(6) as 

2 N + 2  

(f,2f2, -fief22) = P(A 2) = ~, Pkh 2k 
0 

2 N + 2  

(f,3f3,-f,1f33) = Q(A 2) = L Qk A2k (12) 
0 

2 N + 2  

( f23f32-f22f33)  = Q(;t  ~) = E RkZ ~ 
0 

In further analogy with Forest and Maclaughlin (1982) and Date and Tanaka 
(1976), specify the zeros of the analytic functions f~ ,  f22 and f33 to be at 
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the positions as follows: 
N + I  

f,, =f~+' I] [Az-/~;(x, t)] 
j=l 

N+I  

f22=fg +, ]-I [A2-vj(X, t)] 
j = l  

N+I  
f .FN+ 1 33=J3~ H [ , ~ - o - A x ,  t) l  

j=l 

(13) 

i=l  

"+' f~) ]  x H (6,- G) ( fg -  
i = 1  

0/x~ =/zj,/2[f~+ , N(f2~+ , _f~+, ) ]_ ,  
Ox 

N + I  

x i(dl-a~) II ( m - A j ) ( f ~ - f E )  
j = l  

N+I  ] 

+ i (d ,  - d3) I1 (/zj - Bj)(fg - f ~ )  
j = l  

(15) 

(16) 

2.1. Equations Describing the (/z, v, o,) Dynamics 

Before proceeding further, we rewrite the polynomials P, Q, and R as 
finite products in the form 

2 N + l  
P(A2) = I-[ (A2-Aj) 

j=0 

with similar expressions for Q and R. 
Now substituting (13) in (4a)-(4c) and proceeding to the respective 

zeros A 2= $Zj, Oj o r  Vj, we obtain 

Or;= -i(d,-d2)v)/2 f ~ - f ~  
OX fg+l(f~2+a - f ~ + ' )  

N N N+I " ,  1/= f23--f;2 
x L  -1 IF[ (vj-Aj)+i(d2-a3)vj r 

. j = l  ./22 \ J 2 2  - - J l l  ] 

N + I  
x L -1 1-[ (uj - Cj) (14) 

j = l  

O~j __ ~1/2r  4 -N+I AAr[ r  
- - - - u j  [.t33 ~t~'l \ J  33 _f~+~)]-i 
Ox 

I N + I  
x - i ( d l  - d3) H (6j - B j ) ( f ~ - f ~ )  - i ( d 2 -  d3) 
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where N, M, L are the roots of the equation 

(tz ~ - A1)(/z v _ A2)(/z ~ - As) = 0. 

We now go back to the definition of P, Q, and R, and substitute the 
expressions for f j  in them, and equate various powers of A, which leads to 
the following useful identities: 

f + lrN+I  - -  P 2 N + 2  11 J 22  

N N ..~_.~cN+I~cN+I(~ 
f12f~l J l l  J22 ~z., IZj + E vj) = P:N+I 

(17) 
fN+l~cN+l  

11 J 3 3  ~ - -  Q 2 N + 2  

f NrN -r  +E  %) = Q2N+I 1 3 J  31 . / 1 1  d 33 \ / .  ~l.~j 

Utilizing these, we can immediately write equations (14) in the form 

Ouj_ ( d l -  1/2 N+I 2 -1 - - -  d2)v~ [L(PzN+2+(f ;2  ) ] 
Ox 

x ( l+a , )  P2N+a+P~N+2(Em+Z,.j) II ( . j -Aj )  
j = ,  

+ (d2- d3).J/2[L(R~N+2 + (/g+,)~]-i 

{ [ ]1/2 N + I - C j ) }  (18) 
x ( l+a3)  R2N+I+REN+2(~.v~+~,o'j) l-[ (uj 

j = l  

Equation (18) contains only the variables (~, v, ~); all others are constants. 
So equation (18) with two other similar equations for ~r and ~ form a 
coupled set of ordinary nonlinear differential equations for (~, ~,, or). On 
the other hand, an identical set of equations can also be deduced for their 
evolution with time. Note that in the above discussions we never assumed 
that the nonlinear fields Q~, 02, Q3 vanish as x ~ + ~ .  The next step is to 
define suitable differentials on a properly defined Riemann surface which 
will linearize the flow of  x and t and with the help of Abel's inversion 
theorem enable us to determine (tz, u, o-) in terms of 0 functions. But this 
last step is not so instructive, since it is of an abstract nature, so we do not 
pursue it any more, but show a different way which will lead to an explicit 
analysis of  these equations governing the dynamics of  (Iz, u, tr). 

2.2. Reduction of Equations 

In this section we start with the assumption that the zeros/xj, ~j, and 
% are pairwise equal; in that case these equations [i.e., (15), (16), or (18)] 
can be reduced to the form 

. N + ,  /3IIN~, ( m _  8,) 1 1 O/zj a l l j=l  ( I x j - A j )  ~ j= 
t~jl/2 (a + b Y~ " ~1/2 m, ax I],,,j ( m - g , )  l],~j ( m - m )  
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Instead of considering the general case, we consider only N = 2, whence 
we are led to 

1 1 1 1 1 1 
/ .11/2 / * l x  ~C/'--7"77"-~, ~ -~" .'77"1-'~ /*2x  .c'~7---'~-,, "Ji- .'771-72 / . 3 x ' 7 7  x - -  0 

J k / ' ~ l  } /*2  J~,/*2) / .3  Jr~*3) 

1 1 '2 1 1 '2 1 
/* l / 2 /* l x f--i-'-~-'-l l ) "t- /* 21 /*2xf--T;-~/*2)'k-/*3/ / * 3 x f ( / * 3 )  - -  0 

3/2 1 3 '2  1 3/2 1 

/.1 /*lxf(/*l----~+/*2" /.2~f(/.2----~+/.3 / .3~f( / .3) -0  (19) 

3 
(2L3/EA + 2M3/2B + 2N3/2C) ~ i + (2LA ~/2 + 2MB ~/2 

i=1  

N 
+2NC112) �89  ~ = x + k  3 

D 
.- 3 

N = H (/.I/2 = L'/2)L=A(/*~/2- M1/2)M2B(/*I/2 - -  Nil2)N2C 
i=1  

3 
D I] I l l2--rl l2xL2At l l2-- .*II2xM2Br I I2--Ni12)  N2C = t/*i "-r L ) t/*i "-r xv.t ) t/*i "-r 

i=1  

So equations (20)-(22) are now algebraic equations to be solved for/*i. 

(22) 

and 

where 

f(/*) = a (/* - A1)(/. - -  A2)(/* - A3) +/3(/* - B1)(/, - -  B2)(/* - B3) 

= a cubic polynomial in/* 

Our primary aim is to solve for/*l, / .2,/*3 from the three equations in (19), 
but before that, these are to be integrated. 

The first equation of (19) after quadrature leads to 

rl :, (ixi -- L i/2)A(/* ~/2-  M1/2)B (/* Y 2 -  N ' / 2 )  C 
3 . 1 /2~_!-1/2~A[.  l / 2 j _  ~.,tl/2"~B[. 1 / 2 •  k r l / 2 " ~ C -  ek' (20) 

I ~  i=  1 (/t.r i TI.-, } ~[db i T I V I  .] t l t L i  T l ~  ] 

whence the second and third equations of (19) yield respectively, 
3 ~Tr 

(2L1 /2A+2Mi /2B+2Ni /2C)  Y~ ~i" 1/2 +log ~ ' - k  (21) 
i=1 / ~  - -  2 

3 
]Q = I-[ (/*~/2 Li/2)LA(/*~/2 M a l 2 ) M B ( / * ~ / 2  N l l 2 ) N C  

i=1  

3 
1~ = H (/*~/2 + L,/2)LA(/*~/2__ M,/2)MB(/*~/2_ Nii2)Nc 

i =1  
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2.3. Special  case 

By a suitable choice we can make the constants L, M, N all equal and 
in this situation we arrive at the following equations: 

[']-[3 [ ,  1/2 LI/2"~A1 1 3 3p,~-5L . t/2_~ [11~=1 ~ - J / 
~ , ~ , L 2 ( , l _ L ) 2 ~  ~ I n L ~ 3 = ~ ~  j = k ,  (23) 

+ !  ~ l~iL iA:/2+lnrrI3=l(l"~/2--L1/2)aL/~] 
LrI,=, (ul/=+ L1/ )AL/33 8 LZ(a~ _ L)2 ~ = k2 (24) 

1 3 i~i+L ztz~/2+lnrI~=j(g~/2-L1/2) ar2] 
=8 ~ L2(a~- L) LI-[~=1 (~ /2  + Li/2)aL2J 

1 
+ 16L2 ~ (/.~ + 6L)a~/2 = Ax + k3 (25) 

which are to be solved for ~ .  Similar equations can be deduced for o-~ and 
u~. When all these are known, then we know f i - - t h e  analogue of  square 
eigenfunctions, whence the inverse problem is solved via equations (8) and 
(9). 

3. DISCUSSIONS 

In the above analysis we have presented a method for the periodic 
inverse problem of the three-wave problem. Our method is essentially an 
extension of  the procedure due to Date. Furthermore, from the degeneracy 
condition of the zeros of  the squared eigenfunctions we can deduce some 
simpler equation for ( ~ ,  v~, cry) which are algebraic in nature and can lead 
to the solitary wave solutions. So they actually combine both classes of 
solutions together. 
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